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What else can we do with ZedBoard? %
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 Programmable Logic (PL) is also ideal for high-
speed and high-parallel logic and arithmetic.

— However, it might be very hard to implement sometimes.
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Outline

* High-Level Synthesis Concept

* Vivado High-Level Synthesis
— Inputs and Outputs

— High-Level Synthesis Process
* Interface Synthesis
 Algorithm Synthesis

— Optimizations
* Loop
* Array

« Lab Exercise: Accelerating Floating Point Matrix
Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 2021-22 T2 3



High-Level Synthesis (HLS)

« By abstracting/hiding low-level detalls with high-level
representations, high-level synthesis (HLS)
simplifies the description of the circuit dramatically.

A The high level expresses
High Level designs at an algorithmic C/C+.+/SystemC
: design entry
level of abstraction.

S TE;;‘U The behavioral HDL
o o Behavioural describes how the circuit
- 2 “behaves” (what we use!)
0 9
© = : HDL
= u The register transfer level .
= = RTL (RTL) interprets operations design
> 2 occurring between registers. entry
- £

©

The structural level
iInvolves instantiating,
Structural configuring and connecting
hardware elements down to
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HLS vs. Logic Synthesis

* High-level synthesis High
171 : Level
means synthesizing the High Level Synthesis

nigh-level code into an
HDL description.

* |In FPGA design, the term
“synthesis” usually refers
to logic synthesis.

— The process of interpreting
HDL code into the netlist.

* In the HLS design flow,
both types of “synthesis”
are applied (one after the Netlist
other)!
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Why High-Level Synthesis (HLS)?

1) HLS from high-level languages is convenient.

— Engineers are comfortable with languages such as C/C++.
2) The designers simply direct the process, while the
HLS tools (i.e., Vivado HLS) implement the detalls.

— Designs can be generated rapidly; but the designer must
trust the HLS tools in implementing lower-level functionality.

3) HLS separates the functionality and implementation.
— The source code does not fix the actual implementation.

— Variations on the implementations can be created quickly
by applying appropriate “directives” to the HLS process.

In one word: HLS shoots for productivity.
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Design Metrics in HLS

« Hardware design always faces a trade-off between:

1) Area, or Resource Cost — the amount of hardware
required to realize the desired functionality;

2) Speed (specifically throughput or latency) — the rate at
which the circuit can process data.

A
high cost, high throughput @
Poor
- Design!
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. high cost,
low throughput
(poor solutions!)

. low cost, low throughput
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Outline

* Vivado High-Level Synthesis
— Inputs and Outputs

— High-Level Synthesis Process
* Interface Synthesis
 Algorithm Synthesis
— Optimizations
* Loop
* Array
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Vivado HLS

Constraints/ C, C++
’ ' H Testbench
Directives W SystemC W

AR

Vivado HLS

Vivado™ HLS

. R l

VHDL/Verilog RTL Wra ppew
RTL Export

RTL Simulation

IP-XACT | IP Core SysGen
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Inputs to Vivado HLS

1) C/C++/SystemC Files o 1os o oyness) | ) © "
— Functions to be 11
. optional | +--as--v oo
SyntheS|Zed . fup sub- [ i Constraints
2) C Testbench Files g—
— Basis for verifying both _
C code and RTL codes. Vivado HLS
Synthesis

3) Constraints
— Timing constraints along
with a clock uncertainty

and device detalls.

. Packaged IP

" " SystemC
4) Directives RTL mode VHDL / (Vivado / XPS |/
—_ |mp|ementat|on Styles of Verilog System Generator)
pipelining and parallelism. synthesisable outputs
10
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Outputs from Vivado HLS

1) VHDL or Verilog C, C++ or SystemC j C testbench
. (input files for synthesis)
files/codes Sa—
. optional ':_—1—1 L"J,I.L,_:I_,
— SyntheS|Zab|e RTL' mnct?;:; |: e Constraints
Directives

level code that can be
Integrated into a project
to generate a bitstream.

2) Packaged IP
— Convenient for direct
Inclusion into the IP

Vivado HLS
Synthesis

block design. .
3) SyStemC mOdeI R?{St;rgfel . Packaged IP
1 VHDL / (Vivado / XPS /
o NOt Inte_nded for Verilog Syst:moGenerator)
synthesis but only for
synthesisable outputs

RTL simulation.
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Vivado HLS Process

 The HLS process internally involves two major tasks:
1) The interface of the design, i.e., its top-level connections;
2) The functionality of the design, i.e., the algorithm(s).

Interface Synthesis Interface Synthesis

(or Manual Specification) .ri(hm —— (or Manual Specification)

...Functionality...
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Vivado HLS: Interface Synthesis

 The interface can be created manually or inferred
automatically from the code (interface synthesis).

— The ports are inferred from the top-level function
arguments and return values of the source C/C++ file;

— The protocols are inferred from the behavior of the ports.

void find average of best X (int *average, int samples[8], int X)

ap_memory |nterfac-e ap vid
protocol SyntheS|S protocol

samples_ce0 average _ap_vid

1,

!

samples_address0

32

samples
port interface

average
port interface

samples_q0 average
.
. find_average
& _of best X
7 { 32
> E * X
5

o ap_none
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Vivado HLS: Algorithm Synthesis (1/4),

%

 The algorithm synthesis comprises three primary
stages, which occur in the following order:
1) Extraction of Data Path and Control
2) Scheduling and Binding
3) Optimizations

1) Extraction of Data Path and Control

— The first stage of HLS is to analyze the C/C++/SystemC
code and interpret the required functionality.

— The implementation will normally have a datapath
component, and a control component.
« Datapath: operations performed on the data samples,
« Control: the circuitry required to co-ordinate dataflow processing.

CENG3430 Lec09: High Level Synthesis 2021-22 T2 14



Vivado HLS: Algorithm Synthesis (2/4):

2) Scheduling and Binding

— Scheduling is the translation of the RTL statements
Interpreted from the C code into a set of operations, each
with an associated duration in terms of clock cycles.

— Binding is the process of associating the scheduled
operations with the physical resources of the target device.

Source Files

(C, C++, SystemC)
User
. Technolog
Directives I
v Library

HLS Binding
~—_ N\
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Vivado HLS: Algorithm Synthesis (3/4):

2) Scheduling and Binding (Cont’d)

— The resulting implementation has a set of metrics including
() latency, (ii) throughput, and (iii) the amount of resources.
« By default, the HLS process optimizes area (i.e., the first strategy).
(1)
'

(2)

latency = 11

» latency = 5

Resources

@
A |

Key:

Adder (fabric)
IR \utiplier (fabric)

Adder (DSP48x)

[ X ] Multiplier (DSP48x)

o)
0]
3
]
<
|
—

Example: Calculating the average of an array of ten numbers.



Vivado HLS: Algorithm Synthesis (4/4):%

| %

3) Optimizations
* The designer can dictate the HLS process towards
the desired implementation goals:

— Constraints: The designer places a limit on the design.

 For instance, the minimum clock period may be specified.

— This makes it easy to ensure that the implementation meets the
requirements of the system into which it will be integrated.

[ — Directives: The designer can exert more specific influence
over aspects of the RTL implementation.
« HLS tool provides pragmas that can be used to optimize the design.

— This can yield significant changes to the RTL output.

— With knowledge of the available directives, the designer can optimize
\_ according to application requirements. )

CENG3430 Lec09: High Level Synthesis 2021-22 T2 17
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Loop Optimizations

 Loops are used extensively in programming, and
constitute a natural method of expressing operations

that are repetitive in some way.
« By default, Vivado HLS seeks to optimize area.

— Loops are automatically “rolled” (a.k.a. rolled loops).
— That is, loops time-share a minimal set of hardware.

« The operations in a loop are Initiation Interval = 3 cycles
executed sequentially. < >

« The next iteration can only

begin when the last is done.
20 I M

Loop:for(i=1;i<3;i++) {

op_ Read; RD

op_Compute; CMP < >

op_Write; Latency = 3 cycles

¥ - >
Loop Latency = 6 cycles 18
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Loop Optimization #1: Pipelining (1/2)

&
.

« Several loop optimizations can be made using
directives in Vivado HLS.

— Allowing the resulting implementation to be altered with just
few or even no changes to the software code.

 Loop pipelining allows the operations in a loop to be

Implemented In a concurrent manner.

— The initiation interval (II) IS Initiation Interval = 1 cycle
the number of clock cycles «-—»
between the start times of
consecutive loop iterations.

Loop:for(i=1;i<3;i++) { RD | CMP

op_ Read; RD RD CMP
op_Compute; CMP - -
op_Write; Latency = 3 cycles

} - >

CENG3430 Lec09: High Level Synthesis 2021-22 T2 Loop Latency = 4 cycles 19



« To pipeline a loop, put the directive “#pragma HLS
pipeline [II=1]" atthe beginning of the loop.

— Vivado HLS automatically tries to pipeline the loop with the
minimum initiation interval (1I).

— Without the optional II=1 , the best possible initiation
iInterval 1 is used, meaning that input samples can be
accepted on every clock cycle.

for (index a = @; index a < A NROWS; index a++) {
for (index b = @; index b < B_NCOLS; index b++) {
#pragma HLS PIPELINE II=1
float result = @;
for (index d = @; index d < A NCOLS; index d++) {
float product term = in A[index a][index d] * in B[index d][index b];
result += product term;

I
out C[index a * B _NCOLS + index b] = result;

¥
}

CENG3430 Lec09: High Level Synthesis 2021-22 T2 20



Loop Optimization #2: Unrolling (1/2)

« Loop unrolling is a technigue to exploit parallelism
by creating copies of the loop body.

— Unrolling a loop by a factor of N creates N copies of the
loop body, and the loop variable referenced by each copy is
updated accordingly.

« If the factor N is less than the total number of loop iterations (10 in
the below example), it is called a “partial unroll”.

« If the factor N is the same as the number of loop iterations, it is
called a “full unroll”.

Rolled Loops Loops Unrolled by a Factor of 2
int sum = 0; int sum = @;
for(int i = 9; 1 < 10; i++) { for(int i = @; 1 < 10; i+=2) {
sum += al[i]; sum += a[1i];
} sum += a[i1+1];
¥

CENG3430 Lec09: High Level Synthesis 2021-22 T2 21



Loop Optimization #2: Unrolling (2/2) 1%,

 Loop unrolling creates more operations in each loop
iteration, resulting higher parallelism and throughput.

« To unroll a loop, put the directive “#pragma HLS
unroll [factor=N]" at the beginning of the loop .

— Without the optional factor=N, the loop will be fully
unrolled by default.

int sum = 8;

for{(int 1 = ©; 1 < 10; 1++) {

#pragma HLS unreoll factor=2
sum += a[i];

¥

CENG3430 Lec09: High Level Synthesis 2021-22 T2 22



* Loop optimizations aim at exploiting the parallelism
between loop iterations.

— However, parallelism between loop iterations can be limited
mainly by data dependence or hardware resources.

 Loop-carried Dependence: A data dependence

from an operation in an iteration to while (a != b) {
another in a subsequent iteration. if (a > bg
a -= b;
— The subseqguent iteration cannot start else
until the current iteration has finished. b -= a;}
— Array accesses are a common for (1= 1: 1< N; ies)
source of loop-carried dependences. mem[i] = mem[i-1] + i;

— Automatic dependence analysis can be too conservative:
Directive “#pragma HLS dependence” allows you to

explicitly specify and avoid a false dependence.
CENG3430 Lec09: High Level Synthesis 2021-22 T2 23



Factors Limiting the Parallelism (2/2)

* Another limiting factor for parallelism is the number of
available hardware resources.
— If the loop is pipelined with an initiation interval of one,

there are two read operations.

+ If the memory has only one port, then two read operations cannot
be executed simultaneously and must be executed in two cycles.

— Thus, the minimal initiation interval (II) can only be two.

(A) Pipeline with 11=1 (B) Pipeline with [1=2
void foo(m[2]...) {
RD
op_Read m[0];
op_Read m[1]; RD
RD CMP - op_Compute; CMP RD RD CMP -
op_Write; -
RD CMP - } 4——p| RD RD CMP -
=1 [1=2

CENG3430 Lec09: High Level Synthesis 2021-22 T2 24



« Arrays are usually mapped to the Block RAM (BRAM)
of PL, where BRAM has limited read/write ports.

« Partitioning an array into smaller arrays increases
the port number and may improve the throughput.

« To partition an array, put directive “#pragma HLS
array partition [arguments]” within the
boundaries where the array variable is defined.

- variable=<name>:. Specifies the array to be partitioned.
- <type>: Optionally specifies the partition type.

— factor=<int>: Specifies the number of smaller arrays that
are to be created/partitioned.

- dim=<int>: Specifies which dimension of a multi-

dimensional array to partition.
CENG3430 Lec09: High Level Synthesis 2021-22 T2 25



Array Optimization: Partitioning (2/3) 1%

* The <type> argument specifies the partition type:

- block: Splits the array into N equal blocks, where N is the
Integer defined by the factor argument.

- cyclic: Creates smaller arrays by interleaving elements
from the original array.

— complete: Decomposes the array into individual elements

CENG3430 Lec09: High Level Synthesis 2021-22 T2

(it iIs also the default). > 0 1 (N12-7)
block
N/2 N-2 N-1
0 2 N-2
N-3 [ N-2 | N-1 cyclic >
1 N-3 N-1
2
0
complete> N-3
1 N-1
B N-2

26



* The <dim> argument specifies which dimension of a
multi-dimensional array to partition.
— Non-zero value: Only the specified dimension is partitioned.

— Avalue of 0: All dimensions are partitioned.

my_array[10][6][4] —= partition dimension 3 —p=

my_array[10][6][4] — partition dimension 1 —=

my_array[10][6][4] —m pariition dimension 0 —p= 10x6x4 = 240 registers

CENG3430 Lec09: High Level Synthesis 2021-22 T2

my _array_0[10][6]
my _array_1[10][6]
my _array 2[10][6]

my _array_3[10][6]

my_array_0[6][4]
my _array 1[6][4]
my _array 2[6][4]
my _array_3[6][4]
my _array_4[6][4]
my_array_5[6][4]
my_array_6[6][4]
my _array 7[6][4]
my _array_8[6][4]
my_array_9[6][4]

27



Outline

« Lab Exercise: Accelerating Floating Point Matrix
Multiplication with HLS
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Lab Exercise: Matrix Multiplication (1/4)

* In this lab, we will develop an accelerator for the
floating-point multiplication on 32x32 matrices.

— The accelerator is connected to an AXI DMA peripheral in
PL and then to the accelerator coherence port (ACP) in PS.

ZYNQ

Processing System Programmable Logic

ARM CPU GFo < AXl-Lite > fimer
and L1- U
Caches

ACP < DMA HLSIP

core

Memory Controller

L2-Cache
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Lab Exercise: Matrix Multiplication (2/4)

* The function to be optimized is defined in “mmult.h”:

template <typename T, int DIM>
void mmult hw(T A[DIM] [DIM], T B[DIM] [DIM], T C[DIM] [DIM])

{
// matrix multiplication of a A*B matrix
Ll:for (int ia = 0; ia < DIM; ++ia) & L1 iterates over the
{ ‘ | . . rows of the input matrix A.
L2:for (int 1b = 0; 1b < DIM; ++1b) .
{ < L2 iterates over columns
T sum = 0; of the input matrix B.
L3:for (int id = 0; id < DIM; ++id) < L3 multiplies each
{ . - . element of row vector A
sum += Ali1a] [1 * Bla ib] ; )
) 1ral lad] t1dl 1kl with an element of column
Clia] [ib] = sum: vector B and accumulates it
VT 1 1 T 7 to the elements of a row of
a1 aZ a3 bl bZ b3 Cl CZ C3
} the output matrix C.
a, a, a, b, b, b, | =1]¢ ¢ C

How? Utilize “directives” properly to direct HLS!




Lab Exercise: Matrix Multiplication (3/4)

 Resource Cost (Post-Implementation Utilization)

Utilization - Post-Implementation

Resource Utilization Available
LUT 4195
LUTRAM 250

FF 5054

BEEAM 8

D3P 5

BUFG 1

Graph Table

Post-Synthests Post-Implementation

CENG3430 Lec09: High Level Synthesis 2021-22 T2

53200
17400
106400
140
220

32

tilization %
7.69
1.44
4.75
571
2.27
313

Should NOT
over-utilize
the resources!
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Lab Exercise: Matrix Multiplication (4/4)
« Performance (Latency and HW/SW Speedup)

Performance Estimates

= Timing {(ns)

- Summary

[ ook e Eetmed Uncerainy |Shou|d NOT violate timing constraint!

ap_clke 10,00 841 1.25 _ _ _
(i.e., the estimated clock period should be less than the target one)

- Latency (clock cycles)

= Summary
Latency Interval

‘mfn max . min - max Tz«pe‘The higher, the slower!

332872 332872 332873 332873 none

SDK Log | 4 Terminall 23
Senal: (COMB, 115200, 8, 1, Mone, None - COMNECTED) - Enceding: (I50-8859-1)

DMA Init done
Loop time for 1824 iterations is -2 cycles

Running Matrix Mult in SW

Total run time for SW on Processor is 25888 cycles over 1824 tests.

Cache cleared
Total run time for AXT DMA + HW accelerator is 333838 cycles over 1824 tests

Acceleration factor: @.77

The lower, the slower!
CENG3430 Lec09: High Level Synthesis 2021-22 T2
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Student ID:

Class Exercise 9.1 Name:

* |If the directive is used to pipeline L2 loop body, how

should a and b be partitioned for better performance?
template <typename T, int DIM>
void mmult_hw(T a[DIM][DIM], T b[DIM][DIM], T out[DIM][DIM])

{

// matrix multiplication of a A*B matrix
L1:for (int ia = 0; ia < DIM; ++ia)

{
L2:for (int ib = ©; ib < DIM; ++ib)
{
#pragma HLS pipeline
T sum = 0;
L3:for (int id = ©; id < DIM; ++id)
{
sum += a[ia][id] * b[id][ib];
}
out[ia][ib] = sum; B I r 7 B
} [1a][1b] ’ a, a, a, b, b, b c, ¢, ¢
E:etur‘n; a, a, a b, b, b | =1]1¢ ¢ C
¥ a, 3, a, b, b, b, c, ¢ C
CENG3430 Lec09: High Level Synthesis 2021-22 T2 1 L ] B




Summary

* High-Level Synthesis Concept

* Vivado High-Level Synthesis
— Inputs and Outputs

— High-Level Synthesis Process
* Interface Synthesis
 Algorithm Synthesis

— Optimizations
* Loop
* Array

« Lab Exercise: Accelerating Floating Point Matrix
Multiplication with HLS
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